Volume 8, Issue 1, February 2020, Page: 7-16
Analysis of TB Case Counts in Southwest Ethiopia Using Bayesian Hierarchical Approach of the Latent Gaussian Model
Endale Alemayehu, Department of Statistics, College of Natural Sciences, Ambo University, Ambo, Ethiopia
Reta Habtamu, Department of Statistics, College of Natural Sciences, Jimma University, Jimma, Ethiopia
Akalu Banbeta, Department of Statistics, College of Natural Sciences, Jimma University, Jimma, Ethiopia
Received: Jan. 10, 2020;       Accepted: Feb. 26, 2020;       Published: May 19, 2020
DOI: 10.11648/j.bio.20200801.12      View  26      Downloads  36
Abstract
Introduction: Tuberculosis is the long-lasting infectious disease caused by bacteria called Mycobacterium tuberculosis. Globally, in 2016 alone, approximately 10.4 million new cases have occurred. Africa has shared around 25% of the incidence and specifically in Ethiopia around 82 thousand was caught by Tuberculosis. Methods: The study has been conducted in, south west Ethiopia, Jimma zone of entire districts and the data is basically secondary which is obtained from Jimma zone health office. The counts of Tuberculosis case counts have been analyzed with factors like gender, HIV co-infection, Population density and age of patients. The Integrated Nested Laplace Approximation (INLA) method of Bayesian approach which is fast, deterministic and promising alternative to MCMC method was used to determine posterior marginal of the parameters of interest. Results: The Latent Gaussian Model (LGM) of Poisson distributional assumption of Tuberculosis cases that includes both fixed and random effects with penalized complexity priors appeared to be the best model to fit the data based on the Watanabe Akaike Information Criteria and other supportive criteria. Using Kullback-Leibler Divergence criteria, the under-used simplified Laplace approximation indicated that posterior marginal was well approximated by normal distribution. The predictive value of the best model is not far deviated from the actual data based on the Conditional Predictive Ordinate and the probability integral transform. Conclusions: All the variables were significant under this model and the posterior marginal was well approximated by standard Gaussian. The PIT indicated that predictive distribution was less affected by outliers and the model was reasonably well.
Keywords
Tuberculosis, Bayesian Approach, LGM, INLA
To cite this article
Endale Alemayehu, Reta Habtamu, Akalu Banbeta, Analysis of TB Case Counts in Southwest Ethiopia Using Bayesian Hierarchical Approach of the Latent Gaussian Model, American Journal of Bioscience and Bioengineering. Vol. 8, No. 1, 2020, pp. 7-16. doi: 10.11648/j.bio.20200801.12
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Ali H, Zeynudin A, Mekonnen A, Abera S, Ali S. (2017) Smear positive pulmonary tuberculosis (PTB) prevalence amongst patients at Agaro teaching health center, South West Ethiopia.
[2]
Asemahagn, M. A., & Amsalu, G. (2018). Determinants of Sputum Smear Positivity among Tuberculosis Suspected Patients in Bahir Dar City, Northwest Ethiopia, 111–117.
[3]
Baio, G. (2013). An introduction to INLA with a comparison to JAGS Laplace ’ s liberation army.
[4]
Biruk, M., Yimam, B., Abrha, H., Biruk, S., & Amdie, F. Z. (2016). Treatment Outcomes of Tuberculosis and Associated Factors in an Ethiopian University Hospital. Advances in Public Health, 2016, 1–9. https://doi.org/10.1155/2016/8504629.
[5]
Bivand, R. S., Gomes-Rubio, V., & Rue, H. (2015). Spatial Data Analysis with R - INLA with Some Extensions. Journal of Statistical Software, 63 (20), 1–31. https://doi.org/http://dx.doi.org/10.18637/jss.v063.i20.
[6]
Blangiardo, M., & Cameletti, M. (2015). Spatial and Spatio-temporal Bayesian Models with R-INLA. https://doi.org/10.1002/9781118950203.
[7]
Blangiardo, M., Cameletti, M., Baio, G., & Rue, H. (2013). Spatial and Spatio-temporal models with R-INLA. Spatial and Spatio-Temporal Epidemiology, 4, 33–49. https://doi.org/10.1016/j.sste.2012.12.001.
[8]
Bolin, D. (2015). Lecture 1: Introduction Practical information.
[9]
Chalovich, J. M., & Eisenberg, E. (2013). NIH Public Access. Magn Reson Imaging, 31 (3), 477–479. https://doi.org/10.1016/j.immuni.2010.12.017.Two-stage.
[10]
Corbett, E. L., Watt, C. J., Walker, N., Maher, D., Williams, B. G., Raviglione, M. C., & Dye, C. (2003). The Growing Burden of Tuberculosis. Archives of Internal Medicine, 163 (9), 1009. https://doi.org/10.1001/archinte.163.9.1009.
[11]
Czado, C., Gneiting, T., & Held, L. (2009). Predictive model assessment for count data. Biometrics, 65 (4), 1254–1261. https://doi.org/10.1111/j.1541-0420.2009.01191.x.
[12]
Datiko, D. G., & Lindtjørn, B. (2009). Health extension workers improve tuberculosis case detection and treatment success in southern Ethiopia: A community randomized trial. PLoS ONE, 4 (5), 1–7. https://doi.org/10.1371/journal.pone.0005443.
[13]
Deribew, A., Abebe, G., Apers, L., Abdissa, A., Deribe, F., Woldemichael, K., … Colebunders, R. (2012). Prevalence of pulmonary TB and spoligotype pattern of Mycobacterium tuberculosis among TB suspects in a rural community in Southwest Ethiopia. BMC Infectious Diseases, 12 (1), 54. https://doi.org/10.1186/1471-2334-12-54.
[14]
Ethiopian Federal Ministry of Health. (2015). Health Sector Transformation Plan (2015/16-2019/20), 20 (May), 1–118.
[15]
Ferkingstad, E., Held, L., & Rue, H. (2017). Fast and accurate Bayesian model criticism and conflict diagnostics using R-INLA, 1–22. https://doi.org/10.1002/sta4.163.
[16]
Geirsson, O. P., & Hrafnkelsson, B. (2014). Computationally efficient spatial modeling of annual maximum 24 hour precipitation. An application to data, (May).
[17]
Gelman, A., & Hill, J. (2009). Data Analysis Using Regression and Multilevel/Hierarchical Models. Journal of Statistical Software, 30 (April), 1–5.
[18]
Gelman, A., & Hwang, J. (2013). Understanding predictive information criteria for Bayesian models ∗.
[19]
Getahun, H., Gunneberg, C., Granich, R., & Nunn, P. (2010). HIV Infection–Associated Tuberculosis: The Epidemiology and the Response. Clinical Infectious Diseases, 50 (s3), S201–S207. https://doi.org/10.1086/651492.
[20]
Girum, T., Muktar, E., Lentiro, K., Wondiye, H., & Shewangizaw, M. (2018). Epidemiology of multidrug-resistant tuberculosis (MDR-TB) in Ethiopia: a systematic review and meta-analysis of the prevalence, determinants and treatment outcome. Tropical Diseases, Travel Medicine and Vaccines, 4 (1), 5. https://doi.org/10.1186/s40794-018-0065.
[21]
Gugssa Boru, C., Shimels, T., & Bilal, A. I. (2017). Factors contributing to non-adherence with treatment among TB patients in Sodo Woreda, Gurage Zone, Southern Ethiopia: A qualitative study. Journal of Infection and Public Health, 10 (5), 527–533. https://doi.org/10.1016/j.jiph.2016.11.018.
[22]
Hamusse, S. D., Teshome, D., Hussen, M. S., Demissie, M., & Lindtjørn, B. (2016). Primary and secondary anti-tuberculosis drug resistance in Hitossa District of Arsi Zone, Oromia Regional State, Central Ethiopia. BMC Public Health, 16 (1), 1–10. https://doi.org/10.1186/s12889-016-3210-y.
[23]
Harling, G., & Castro, M. C. (2014). Health & Place A spatial analysis of social and economic determinants of tuberculosis in Brazil. Health & Place, 25, 56–67. https://doi.org/10.1016/j.healthplace.2013.10.008.
[24]
Hayward, S., Harding, R. M., Mcshane, H., & Tanner, R. (2018). Factors influencing the higher incidence of tuberculosis among migrants and ethnic minorities in the UK [version 1; referees: 1 approved, 1 approved with reservations] Referee Status:, (0). https://doi.org/10.12688/f1000research.14476.1.
[25]
Heunis, J. C., Kigozi, N. G., Chikobvu, P., Botha, S., & Rensburg, H. C. J. D. Van. (2017). Risk factors for mortality in TB patients: a 10-year electronic record review in a South African province. BMC Public Health, 1–7. https://doi.org/10.1186/s12889-016-3972-2.
[26]
Hosseini, F., Eidsvik, J., & Mohammadzadeh, M. (2011). Approximate Bayesian inference in spatial GLMM with skew normal latent variables. Computational Statistics and Data Analysis, 55 (4), 1791–1806. https://doi.org/10.1016/j.csda.2010.11.011.
[27]
Iddrisu, A., & Amoako, Y. A. (2016). Spatial Modeling and Mapping of Tuberculosis Using Bayesian Hierarchical Approaches. Open Journal of Statistics, 6 (June), 482–513. https://doi.org/10.4236/ojs.2016.63043.
[28]
Jacirema, M., Gonçalves, F., Carlos, A., Leon, P. De, Lúcia, M., & Penna, F. (2009). A multilevel analysis of tuberculosis- associated factors, 11 (6), 918–930.
[29]
Jaya, M., Padjadjaran, U., & Folmer, H. (2014). Conditional Autoregressive Model on Dengue Fever Disease Mapping In Conditional Autoregressive Model on Dengue Fever Disease Mapping In Bandung City, (November). https://doi.org/10.13140/2.1.2654.4961.
[30]
Kebede, A. H., Alebachew Wagaw, Z., Tsegaye, F., Lemma, E., Abebe, A., Agonafir, M., … Onozaki, I. (2014). The first population-based national tuberculosis prevalence survey in Ethiopia, 2010-2011. International Journal of Tuberculosis and Lung Disease, 18 (6), 635–639. https://doi.org/10.5588/ijtld.13.0417.
[31]
Kipruto, H., Kipruto, H., Mung, J., Ogila, K., Adem, a, Mwalili, S., … Sang, G. (2015). Spatial Temporal Modelling of Tuberculosis in Kenya Using Small Area Estimation Spatial Temporal Modelling of Tuberculosis in Kenya Using Small Area Estimation, 4 (October), 1216–1224.
[32]
Kruschke, J. K. (2008). Bayesian approaches to associative learning: From passive to active learning. Learning and Behavior, 36 (3), 210–226. https://doi.org/10.3758/LB.36.3.210.
[33]
Legido-Quigley, H., Montgomery, C. M., Khan, P., Atun, R., Fakoya, A., Getahun, H., & Grant, A. D. (2013). Integrating tuberculosis and HIV services in low- and middle-income countries: A systematic review. Tropical Medicine and International Health, 18 (2), 199–211. https://doi.org/10.1111/tmi.12029.
[34]
Lindgren, F., Rue, H., & Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society, Series B, 73, 423–498. https://doi.org/10.1111/j.1467-9868.2011.00777.
[35]
Lönnroth, K., Migliori, G. B., Abubakar, I., D’Ambrosio, L., De Vries, G., Diel, R., … Raviglione, M. C. (2015). Towards tuberculosis elimination: An action framework for low-incidence countries. European Respiratory Journal, 45 (4), 928–952. https://doi.org/10.1183/09031936.00214014.
[36]
Martinez, L., Shen, Y., Mupere, E., Kizza, A., Hill, P. C., & Whalen, C. C. (2017). Transmission of Mycobacterium Tuberculosis in Households and the Community: A Systematic Review and Meta-Analysis. American Journal of Epidemiology, 185 (12), 1327–1339. https://doi.org/10.1093/aje/kwx025.
[37]
Martino, S. (2008). Implementing Approximate Bayesian Inference using Integrated Nested Laplace Approximation : a manual for the inla program, (2007), 1–72.
[38]
Moghaddam, H. T., Moghadam, Z. E., Khademi, G., Bahreini, A., & Saeidi, M. (2016). Tuberculosis: Past, Present and Future. Int J Pediatr, 4 (125), 1243–1255. https://doi.org/10.22038/IJP.2016.6266.
[39]
Ntirampeba, D., Neema, I., & Kazembe, L. (2018). Modelling spatio-temporal patterns of disease for spatially misaligned data: An application on measles incidence data in Namibia from 2005-2014. PLoS ONE, 13 (8), 1–18. https://doi.org/10.1371/journal.pone.0201700.
[40]
Nzabanita, J. (2012). Estimation in Multivariate Linear Models with Linearly Structured Covariance Matrices.
[41]
Octavianty, Toharudin, T., & Jaya, I. G. N. M. (2017). Geographically weighted poisson regression semiparametric on modeling of the number of tuberculosis cases (Case study: Bandung city). AIP Conference Proceedings, 1827. https://doi.org/10.1063/1.4979438.
[42]
Ojo, O. B., Lougue, S., & Woldegerima, W. A. (2017). Bayesian generalized linear mixed modeling of Tuberculosis using informative priors, 1–14. https://doi.org/10.1371/journal.pone.0172580.
[43]
Opitz, T., Opitz, T., Gaussian, L., & Inla, A. (2016). Latent Gaussian modeling and INLA : A review with focus on space-time applications To cite this version: ´ e ´ Franc Journal de la Soci et Latent Gaussian modeling and INLA : A review with focus on space-time applications.
[44]
Pahlavanzadeh, B., Nasehi, M., & Sekhavati, E. (2016). The examination of relationship between socioeconomic factors and number of tuberculosis using quantile regression model for count data in Iran 2010-2011.
[45]
Pedro, H. S. P., Coelho, A. G. V, Mansur, I. M., Chiou, A. C., Pereira, M. I. F., Belotti, N. C. U., … Chimara, E. (2017). Epidemiological Analysis of Pulmonary Tuberculosis in Heilongjiang Province China from 2008 to 2015. International Journal of Mycobacteriology, 6 (3), 239–245. https://doi.org/10.4103/ijmy.ijmy.
[46]
Piironen, J., & Vehtari, A. (2017). Comparison of Bayesian predictive methods for model selection. Statistics and Computing, 27 (3), 711–735. https://doi.org/10.1007/s11222-016-9649.
[47]
Randremanana, R., Richard, V., Rakotomanana, F., Sabatier, P., & Bicout, D. (2010). Bayesian mapping of pulmonary tuberculosis in Antananarivo, Madagascar. BMC Infectious Diseases, 10 (1), 21. https://doi.org/10.1186/1471-2334-10-21.
[48]
Repository, Z. O. (2011). Statistical analysis of spatio-temporal veterinary surveillance data: Applications of integrated nested Laplace approximations Statistical Analysis of Spatio-Temporal Veterinary Surveillance Data: Applications of Integrated Nested Laplace Approximations.
[49]
Riebler, A., Sørbye, S. H., Illian, J. B., Simpson, D. P., & Lindgren, F. K. (2017). Bayesian Computing with INLA: A Review Ha. https://doi.org/10.1146/annurev-statistics-060116-054045
[50]
Rue, H., & Martino, S. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations, 319–392.
[51]
Samuels, M. B., & Bell, N. K. (1990). Book Reviews Editor. The Journal of Rural Health, 6 (3), 328–330. https://doi.org/10.1111/j.1748-0361.1990.tb00671.
[52]
Simpson, D. (2014). Penalising model component complexity : A principled, practical approach to constructing priors, (January 2016). https://doi.org/10.1214/16-STS576.
[53]
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian Measures of Model Complexity anf Fit. Journal of the Royal Statistical Society Series B (Statistical Methodology), 64 (4), 583–639. https://doi.org/10.1111/1467-9868.00353.
[54]
Sreenivasulu, T., Jahnavi, K., Sreenivasulu, T., & Med, J. A. (2018). A cross sectional study on factors affecting treatment outcome among TB patients, 5 (1), 175–178.
[55]
Srinivasan, R., & Venkatesan, P. (2014). Bayesian random effects model for disease mapping of relative risks, 5 (1), 23–31.
[56]
Statistical Decision Theory and Bayesian Analysis. (2015), (April).
[57]
Sturtz, S. (2008). H. Rue, L. Held: Gaussian Markov random fields. Theory and applications. Metrika (Vol. 67). https://doi.org/10.1007/s00184-007-0162-3.
[58]
Sulis, G., Centis, R., Sotgiu, G., Ambrosio, L. D., Pontali, E., Spanevello, A.,… Migliori, G. B. (2016). Recent developments in the diagnosis and management of tuberculosis, (June). https://doi.org/10.1038/npjpcrm.2016.78.
[59]
Tonui, B., Mwalili, S., & Wanjoya, A. (2018). Spatio-Temporal Variation of HIV Infection in Kenya, 811–830. https://doi.org/10.4236/ojs.2018.85053.
[60]
Van Der Linde, A. (2005). DIC in variable selection. Statistica Neerlandica, 59 (1), 45–56. https://doi.org/10.1111/j.1467-9574.2005.00278.x.
[61]
Vehtari, A., & Gelman, A. (2016). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC ∗, (September), 1–28.
[62]
Volmink, J., & Garner, P. (2015). Directly observed therapy for treating tuberculosis. Cochrane. Database. Syst. Rev., (5), DOI: 10.1002/14651858.CD003343.pub4. https://doi.org/10.1002/14651858.CD003343.pub4.www.cochranelibrary.com.
[63]
WHO. (2014). Global tuberculosis report 2014 WHO Library Cataloguing-in-Publication Data. World Health Organization, 1–171.
[64]
WHO. (2016). Global Tuberculosis Report 2016. Cdc 2016, (Global TB Report 2016), 214. https://doi.org/ISBN 978 92 4 156539 4.
[65]
WHO. (2017). Global Tuberculosis Report 2017. World Health Organization. https://doi.org/WHO/HTM/TB/2017.23.
[66]
world health organization. (2015). Global Tuberculosis report 2015. World Health Organisation, 20 (1), 1–145. https://doi.org/10.1017/CBO9781107415324.004.
Browse journals by subject