Molecular Modeling and Docking of Ribitol Dehydrogenase Exploring Enzyme NAD+ and D-psicose Interaction
Hinawi A. M. Hassanin,
Wanmeng Mu,
Marwa Y. F. Koko,
Tao Zhang,
Ammar Alfarga,
Mandour H. Abdelhai,
Bo Jiang
Issue:
Volume 4, Issue 3, June 2016
Pages:
34-40
Received:
14 April 2016
Accepted:
25 April 2016
Published:
10 May 2016
Abstract: Allitol is an alcohol monosaccharide, is a reduction of D-psicose. It is functions as a cross linking of D- and L-hexoses. It existed in too small quantities in commercial sugars and is difficult to synthesize by using chemical methods. It has a hypoglycemic function, and can use as Laxative in treating of constipation, which can exploit in production of diabetes drugs. The present report investigates about the production of allitol by ribitol dehydrogenase (RDH), its action of the enzyme through homology and molecular docking studies. We have investigated ribitol dehydrogenase (RDH) from providencia alcalifaciens RIMD 1656011. The protein sequence of RDH was conducted for homology modeling through Swiss model. 3D structure revealed was docked with NAD+ and D-psicose using AutoDock Vina software version 5.6. The results of homology modeling and docking studies revealed that the conserved residues of RDH were Tyr 153, Tyr 92, Ser 17 and Lys157 with NAD+, while conserved residues with D-psicose were GLN67 and ASP61. NAD+ has good interaction with RDH showing grid score of -49.84, which is a good score for binding.
Abstract: Allitol is an alcohol monosaccharide, is a reduction of D-psicose. It is functions as a cross linking of D- and L-hexoses. It existed in too small quantities in commercial sugars and is difficult to synthesize by using chemical methods. It has a hypoglycemic function, and can use as Laxative in treating of constipation, which can exploit in product...
Show More